Skyrmions and Nuclei

Nicholas S. Manton

DAMTP, University of Cambridge N.S.Manton@damtp.cam.ac.uk

Brookhaven National Lab, November 2016

Outline

- 1. Chiral Symmetry and EFT
- 2. Classical Skyrmions
- 3. Quantised Skyrmions
- 4. Carbon-12 and Oxygen-16
- ▶ 5. Summary

1. Chiral Symmetry and EFT

- SO(3) Isospin symmetry is the visible symmetry in strong interaction physics of particles and nuclei. Pions form a triplet, an isovector. Proton-neutron and up-down quarks are isospin doublets, so isospin is effectively SU(2) (like spin).
- (u, d) mass difference and Coulomb effects break isospin symmetry. Isospin still useful for light and medium-mass nuclei. E.g. Lithium-7/Beryllium-7 is an isospin doublet, with similar nuclear spectra.
- ► There is a larger, spontaneously broken, Chiral Symmetry SO(4) ≃ SU(2) × SU(2) for massless quarks. Isospin is the unbroken subgroup. Pions are (approximate) Goldstone bosons.

Effective Field Theory (EFT)

▶ An EFT of hadrons dispenses with quarks. Chiral symmetry acts by SO(4) rotations on fields σ , π_1 , π_2 , π_3 . There is also a nonlinear constraint

$$\sigma^2 + \pi_1^2 + \pi_2^2 + \pi_3^2 = 1$$

so three fields are dynamical (the pions). The combined field lies on this 3-sphere.

- EFT is chirally symmetric if it only involves derivatives of the fields in an SO(4) invariant way.
- The vacuum is

$$\sigma = 1$$
 and $\pi = 0$.

SO(3) is the unbroken subgroup and acts by (iso)rotations on π .

An additional SO(3) invariant potential gives pions a small mass.

Skyrme Model

- The Skyrme model is a simple EFT with three parameters, but not carefully tuned to hadronic physics. Perturbatively, it describes massive, interacting pions.
- Skyrme's key idea: No explicit nucleon fields. Nucleons are identified with solitons (Skyrmions) of the pion theory. These are smooth, localised solutions of the field equations.
- Large N_c limit of QCD → Nucleon becomes heavy and classical. QCD symmetries and anomalies are consistent with a topological baryon number (Witten).
- ► Chiral bag model of nucleons has constituent quarks inside and pion fields outside. Boundary condition makes the pion field similar to Skyrmion structure. As bag radius goes to zero, just a Skyrmion remains – the Cheshire Cat principle (Goldstone and Jaffe, Rho).

SU(2) Skyrme field

$$U(x) = \sigma(x) \mathbf{1}_2 + i\pi(x) \cdot \tau$$

with $\sigma^2 + \pi \cdot \pi = 1$. Boundary condition $U \to \mathbf{1}_2$ as $|\mathbf{x}| \to \infty$.

- ▶ Current (gradient of *U*) is $R_{\mu} = (\partial_{\mu} U)U^{-1}$.
- ▶ Skyrme Lagrangian *L* (Skyrme units) is

$$\int \left\{ -\frac{1}{2} \text{Tr}(R_{\mu}R_{\mu}) - \frac{1}{16} \text{Tr}([R_{\mu}, R_{\nu}][R_{\mu}, R_{\nu}]) - m_{\pi}^{2} \text{Tr}(\mathbf{1}_{2} - U) \right\} d^{3}x$$

2. Classical Skyrmions

Skyrmions occur naturally, because the field U in ordinary space \mathbb{R}^3 can wind round the (target) 3-sphere, with an integer winding number:

Winding number = Degree of U = Baryon number B.

► The integral formula for Baryon number B is

$$B = -rac{1}{24\pi^2}\int arepsilon_{ijk} {
m Tr}(R_i R_j R_k) d^3x$$
.

- ▶ Dominant Skyrmions are minimal energy, static solutions for each *B*, and are interpreted as intrinsic structures of nuclei.
- Visualise Skyrmions using Runge colour sphere: Colours recording the normalised pion field $\hat{\pi}(\mathbf{x})$ are superposed on a constant energy density surface.

Constant energy density surfaces of B=1 to B=8 Skyrmions (with $m_{\pi}=0$) [R. Battye and P. Sutcliffe]

B = 1 Skyrmion (two different orientations)

B = 2 Skyrmion [D. Feist]

Scattering B = 1 Skyrmions [D. Foster and S. Krusch]

B=3 Skyrmion

B=4 Skyrmion – Alpha particle

B = 6 Skyrmion (two different orientations)

$$B=8$$
 Skyrmion ($m_{\pi}=1$)

How Skyrmions are Constructed

- Basic B = 1 Skyrmion is based on spherical "hedgehog" ansatz. Radial profile is solution of ODE.
- ➤ To construct larger Skyrmions: Put B = 1 Skyrmions in attractive relative orientations. Best arrangements are subclusters of FCC lattice. Four Skyrmion orientations occur, on four sublattices. Optimal cluster symmetries are tetrahedral or cubic.
- ▶ Or: Build Skyrmion fields $\mathbb{R}^3 \to S^3$ using rational maps $S^2 \to S^2$ and radial profiles [C. Houghton, NSM and P. Sutcliffe]. This gives approximate solutions, whose symmetries help in the quantisation programme.
- ➤ Or: Relate Skyrmions to other solitons, e.g. monopoles, instantons ansatz of M. Atiyah and NSM.

3. Quantised Skyrmions

- Skyrmions can be quantised as (coloured) rigid bodies:
 They acquire spin and isospin. Skyrme field topology and Skyrmion symmetries constrain the allowed states
 [Finkelstein-Rubinstein].
- Quantised vibrational deformations of Skyrmions can also be considered.
- ► The principal test of the Skyrme model: Compare quantised Skyrmions to nuclei and their excited states. Several energy spectra and a few EM transitions have been calculated so far.
- The results are closer to collective models and cluster models of nuclei, than to shell model physics.

- Lowest-energy quantum states for small B were found by Adkins, Nappi and Witten; Braaten and Carson; Walhout:
- ▶ B = 1: Proton and neutron, with spin $J = \frac{1}{2}$ and isospin $I = \frac{1}{2}$. Excited states (Delta-resonances) have $J = I = \frac{3}{2}$.
- ▶ B = 2: ²H (Deuteron as spinning torus), with J = 1 and I = 0.
- ▶ B = 3: ³H and ³He, with $J = \frac{1}{2}$ and $I = \frac{1}{2}$.
- ▶ B = 4: ⁴He (Alpha particle), with J = I = 0.

Classically spinning B = 1 Skyrmions, modelling p and n states [D. Foster and NSM]

- ▶ B = 6 Skyrmion has rotational states like stack of three B = 2 Skyrmions (d+d+d or α +d). Isospin 0 states represent Lithium-6, and have spins $J^P = 1^+, 3^+$.
- ▶ B = 7 dodecahedral Skyrmion has isospin $\frac{1}{2}$ states with minimal spin $\frac{7}{2}$. A vibrational mode allows B = 4 / B = 3 clusters, and states of spin $\frac{3}{2}$, $\frac{1}{2}$ and $\frac{5}{2}$ (C.J. Halcrow).
- ► Therefore, the spin $\frac{7}{2}$ state of Lithium-7/Beryllium-7 predicted to have smallest radius.
- ▶ Beryllium-8's clear rotational band with resonance states $J^P = 0^+, 2^+, 4^+$ reproduced by the quantised "double-cube" Skyrmion, with energies close to $\frac{1}{2V}J(J+1)$.

Energy level diagram for nuclei with B = 8

Skyrmions of Larger Baryon Number

- ▶ B>8 Skyrmions have multi-layer geometry. New methods needed to construct configurations to relax numerically. Skyrmions are more compact when $m_\pi \simeq 1$ (its physical value).
- ► Gluing together B = 4 cubes with colours touching on faces works for B = 12, 16, 24, 32 [Feist].
- None can also cut chunks from the Skyrme crystal, a cubic array of half-Skyrmions, with exceptionally low energy per Skyrmion [Castillejo et al., Kugler and Shtrikman]. B = 32 and B = 108 illustrate this. One can cut single Skyrmions off the corners of these chunks, to obtain, e.g. B = 31 and B = 100.
- ► The Coulomb energy for large *B* shifts Skyrmion energies but has little effect on their shapes or quantum wavefunctions.

B = 12 Skyrmion with D_{3h} symmetry

B = 12 Skyrmion with D_{4h} symmetry

B = 32 Skyrmion

B = 31 Skyrmion (B=32 with corner cut off)

B = 108 Skyrmion [P.H.C. Lau]

4. Carbon-12 and Oxygen-16

- ► Two B = 12 Skyrmions have very similar energies both are apparently stable. One is a triangle of B = 4 cubes with D_{3h} symmetry, the other a linear chain with D_{4h} symmetry.
- ▶ P.H.C. Lau and NSM have quantised their rotational motion as rigid bodies. The relevant inertia coefficients $V_{11} = V_{22}$ and V_{33} have been calculated for each Skyrmion.
- ▶ Allowed states for the triangular Skyrmion have spin/parity $J^P = 0^+, 2^+, 3^-, 4^-, 4^+, 5^-, 6^+, 6^-, 6^+$ in rotational bands with K = 0, 3, 6. Their energies are

$$E(J,K) = \frac{1}{2V_{11}}J(J+1) + \left(\frac{1}{2V_{33}} - \frac{1}{2V_{11}}\right)K^2.$$

These match well the experimental rotational band of the ground state.

The Hoyle State of Carbon-12

- Our model suggests that the 0⁺ Hoyle state corresponds to the linear chain Skyrmion.
- ► The $J^P = 0^+, 2^+, 4^+$ rotational band of Hoyle state excitations [M. Freer et al.] has much smaller slope than the ground state band.
- The ratio of slopes, and the ratio of the root mean square radii of the Carbon-12 ground state and Hoyle state, are well fitted by the Skyrmions.
- The Skyrme model makes predictions for several spin 6 states.

Rotational energy spectrum of the two B=12 Skyrmions, compared with data

States of Oxygen-16

- ► Four *B* = 4 cubes can be arranged as a tetrahedron or flat square. Rigid-body quantisation of these gives rotational bands, but misses states associated with vibrations.
- C. Halcrow, C. King and NSM have considered a 2-parameter family of configurations of four cubes, and have quantised these parameters together with rotations. This incorporates both the tetrahedron and flat square.
- ► The configurations all have *D*₂ symmetry so miss the 1⁻ vibrational states.

Scattering channel of four B = 4 Skyrmions (alpha particles)

Model of B = 16 Tetrahedral Skyrmion [A. Aitta and NSM]

Model of B = 16 Flat Square Skyrmion

Energy level diagram for 16 O states. Solid \equiv Skyrme model. Circle/Triangle $\equiv +/-$ parity. Hollow \equiv Experiment.

5. Summary

- ► Fundamental to the Skyrmion model of nuclei is the chiral field *U(x)* of an EFT. Skyrmions are topological solitons. Protons and neutrons are *B* = 1 Skyrmions with quantised spin and isospin.
- ► Toroidal and cubic Skyrmions, with B = 2 and B = 4, appear as substructures in all Skyrmions, and are easily seen. They correspond to deuteron and alpha particle constituents of larger nuclei.
- If Skyrmions are treated as rigid bodies, the binding energies are too large, and charge densities have too much spatial inhomogeneity.
- Recent work on Skyrmion quantisation allows for vibrations, and relative motion of sub-clusters. This gives improved models for ⁷Li/⁷Be and ¹⁶O.

Supplementary Material

Quantisation Constraints for B = 6 Skyrmion

► The B = 6 Skyrmion has D_{4d} symmetry. Its two rotational generators give Finkelstein-Rubinstein constraints

$$\begin{array}{lcl} e^{i\frac{\pi}{2}L_3}e^{i\pi K_3}|\Psi\rangle & = & |\Psi\rangle \\ e^{i\pi L_1}e^{i\pi K_1}|\Psi\rangle & = & -|\Psi\rangle \,. \end{array}$$

(Note: L_i , K_i are spin and isospin operators w.r.t. body-fixed axes. There are no constraints on the spin and isospin projections w.r.t. space-fixed axes.)

► Allowed states have Isospin 0 (⁶Li), with spin/parity

$$J^P = 1^+, 3^+, 4^-, 5^+, 5^-, \cdots,$$

and Isospin 1 (⁶He, ⁶Li, ⁶Be), with spin/parity

$$J^P = 0^+, 2^+, 2^-, \cdots$$

► The energy spectrum depends on rotational and isorotational moments of inertia, which we can calculate.

B=8 States

- For isospin 1 (Lithium-8 and Boron-8) the Skyrme model predicts low-energy $J^P = 0^-, 2^-$ states in addition to the known $J^P = 2^+, 3^+$ states. These have not been seen, but may be hard to produce and observe.
- ► The isospin 2 quintet (Helium-8 etc.) has correct $J^P = 0^+$ ground states.
- We are currently studying the circumstances where isospin excitations can be treated as collective, with spectra I(I + X).